当前位置:首页 → 职业资格 → 教师资格 → 中学数学学科知识与教学能力->设f(x)是[0,1]上的可导函数,且厂f'(x)有界。证明
设 f(x)是[0,1]上的可导函数,且厂 f'(x)有界。证明:存在 M>0,使得对于任意 x1,x2∈[0,1],有|f(x1)-f(x2)| ≤M|x1-x2|。
本题考查微分中值定理。 当 x1=x2时结论显然成立。不妨设 x1<x2,因为 f(x)是[0,1]上的可导函数,所以 f(x)在区间[x1,x2]上连续,在区 间(x1,x2)上可导,由拉格朗日中值定理可得,存在-点ξ∈(x1,x2),使得 f(x1)-f(x2)=f'(ξ)(x1-x2),即有| f(x1)-f(x2)|=|f'(ξ)| |x1-x2|。因为 f'(x)有界,故存在 M>0,对任意 x∈[0,1]都有|f'(x)|≤M,所以|f'(ξ)| ≤M。故|f(x1)-f(x2)|≤M|x1-x2 |。
教师职业道德区别于其他职业道德的显著标志就是( )。
教师在直观教学时,应用“变式”方法的目的在于( )。
《普通高中数学课程标准(实验)》提出五种基本能力,没有包含在其中的是
在教学过程中,教师指导学生体验客观事物的真善美的方法是( )。
在学校教育依照特定教学目标组织教学的过程中,起关键作用的是( )。
被毛泽东主席誉为“一代天骄”的成吉思汗( )
"三五步行遍天下,六七人百万雄兵”描写的是( )。
简述学习动机的分类。
简述学生心理发展的基本特征。
在教育史上主张“不愤不启,不悱不发”的教育家是()。