当前位置:首页 → 职业资格 → 教师资格 → 中学数学学科知识与教学能力->针对“角平分线的性质定理”的内容,请你完成下列任务:(1)叙
针对“角平分线的性质定理”的内容,请你完成下列任务:
(1)叙述角平分线的性质定理; (5 分) (2)设计“角平分线的性质定理“教学过程(只要求写出新课导入、定理形成与证明过程),并说明设计意图; (20 分) (3)借助“角平分线的性质定理”,简述如何帮助学生积累认识几何图形的数学活动经验.(5 分).
(1)角平分线上的点到角两边的距离相等。 (2)新课导入: 教师:我们应该在很早之前就接触过角的平分线这个概念,谁能告诉我什么是角的平分线呢?(学生回答)一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。 教师:大家观察一下这个角,其实,再添加一些线段就能成为两个三角形,我们之前学习了全等三角形的性质及判定, 那么结合这个,我们是否能够发现角的平分线的一些性质呢?今天我们就来探究一 下这个问题。 设计意图:复习角平分线的定义,并为角平分线的性质定理的引出做铺垫,为下一步设置问题通过折纸及作图过程, 由学生自己去发现结论。 教学活动:任意作-一个角 LAOB, 作出 LAOB 的平分线 OC,在 OC 上任取一点 P,过点 P 画出 OA 和 OB 的垂线, 分别记 垂足为 D, E,PD 和 PE 有什么关系?引导学生猜想。 教师:大家可以用直尺来量测一下,能够得到结论吗? 大部分同学都得到了 PD=PE 的结论。 那么有谁能够利用数学方法来证明一下呢? 已知:如图,∠AOC=∠BOC, 点 P 在 0C 上,PD⊥OA,PE⊥OB,垂足分别为 D,E。 求证: PD=PE。
师生共同证明:
∵PD⊥OA,PE⊥OB
∴∠PDO=∠PEO=90°
在ΔPDO 和ΔPEO 中
∠PDO=∠PEO (已证)
∠AOC=∠BOC
OP=OP (公共边)
∴ΔPDO≌ΔPEO (AAS)
∴PD=PE (全等三角形的对应边相等)
得到角平分线性质:角的平分线上的点到角的两边的距离相等。
教师:通过刚刚的证明,我们得到了我们的结论是正确的。是不是在角平分线上任意取点,都可以得到这个结论呢?
(学生动手验证)
教师:我们发现,任意一点都可以得到相等的结论。由此,我们得到了角平分线的性质:
角平分线上的点到角的两边的距离相等。
结论数学语言:
∵OP 平分∠AOB,PD⊥OA,PE⊥OB
∴PD=PE。
教师:在这个定理中,我们必须明白,这个性质的应用必须满足几个条件:
(1)角的平分线;
(2)点在该平分线上;
(3)垂直距离。
设计意图:让学生通过实验发现、分析概括、推理证明角的平分线的性质,体会研究几何问题的基本思路,以角的平 分线的性质的证明为例,让学生概括几何名命题的-般步骤,发展学生的归纳概括能力。 (3)数学活动经验是一种 属于学生自己的“主观性认识”,对于认识几何图形的数学活动经验,是学生经过数学学 习后对整个数学活动过程产生的认识。如何帮助学生积累认识几何图形的数学活动经验,首先要联系直观图形,把 生活经验转化为基本数学活动经验。学生在生活中已经积累的一些关于数学的原始、初步的经验,因此要善于捕捉 生活中的数学现象,挖掘数学知识的生活内涵,让学生亲身经历将生活经验转化为数学活动经验的过程。例如在本 节课中,可以先让学生画一个角,然后探究角平分线的作法。利用模型教具说明平分角的仪器的工作原理,从中受 到启发,利用尺规做角的平分线,进-步思考角的平分线上的点的特征。
其次要引导观察、思考推理,丰富学生思维的经验。 积累活动经验总得依赖一些活动,但是所谓的活动并不-定是 指直观的操作活动,行为操作的经验是基本活动经验,抽象的思考、探究的经验也是基本活动经验的重要组成部分。 例如在本节课中,教师在抛出“PD 和 PE 有什么关系?之后,教师先引导学生进行猜想,再带领学生进行自主探究 去证明,对于不同的学生想出证明方法可能都不一样,所以教师可以组织学生进行汇报交流,最后师生共同总结得 到证明方法:最終得到角平分线定理的性质。
教师职业道德区别于其他职业道德的显著标志就是( )。
教师在直观教学时,应用“变式”方法的目的在于( )。
《普通高中数学课程标准(实验)》提出五种基本能力,没有包含在其中的是
在教学过程中,教师指导学生体验客观事物的真善美的方法是( )。
在学校教育依照特定教学目标组织教学的过程中,起关键作用的是( )。
被毛泽东主席誉为“一代天骄”的成吉思汗( )
"三五步行遍天下,六七人百万雄兵”描写的是( )。
简述学习动机的分类。
简述学生心理发展的基本特征。
在教育史上主张“不愤不启,不悱不发”的教育家是()。