当前位置:首页 → 学历类 → 研究生入学 → 数学二->设三阶矩阵A=(α1,α2,α3),B=(β1,β2,β3)
设三阶矩阵A=(α1,α2,α3),B=(β1,β2,β3),若向量组α1,α2,α3可以由向量组β1,β2,β3线性表出,则( ).
因为向量组α1,α2,α3。可由向量组β1,β2,β3线性表出,所以存在矩阵C,使得A=BC,取转置得CTBT=AT,对于?α,BTα=0,则CTBTα=0,即ATα=0,故BTx=0的解均为ATX=0的解.