阅读下列说明和C代码,回答问题1至问题2,将解答写在答题纸的对应栏内。
【说明】
一个无向连通图G点上的哈密尔顿(Hamiltion)回路是指从图G上的某个顶点出发,经过图上所有其他顶点一次且仅一次,最后回到该顶点的路径。哈密尔顿回路算法的基础如下:假设图G存在一个从顶点V0出发的哈密尔顿回路V1--V2--V3--...--Vn-1--V0。算法从顶点V0出发,访问该顶点的一个未被访问的邻接顶点V1,接着从顶点V1出发,访问V1一个未被访问的邻接顶点V2,..。;对顶点Vi,重复进行以下操作:访问Vi的一个未被访问的邻接接点Vi+1;若Vi的所有邻接顶点均已被访问,则返回到顶点Vi-1,考虑Vi-1的下一个未被访问的邻接顶点,仍记为Vi;直到找到一条哈密尔顿回路或者找不到哈密尔顿回路,算法结束。
【C代码】
下面是算法的C语言实现。
(1)常量和变量说明
n :图G中的顶点数
c[][]:图G的邻接矩阵
K:统计变量,当前已经访问的顶点数为k+1
x[k]:第k个访问的顶点编号,从0开始
Visited[x[k]]:第k个顶点的访问标志,0表示未访问,1表示已访问
(2)C程序
#include <stido.h>#include <stidb.h>#define MAX 100voidHamilton(intn,int x[MAX,intc[MAX][MAX]){int;int visited[MAX];int k;/*初始化 x 数组和 visited 数组*/for (i=0:i<n;i++){x[i]=0;visited [i]=0;}/*访问起始顶点*/k=0( );x[0]=0K=k+1/*访问其他顶点*/while(k>=0){x[k]=x[k]+1;while(x[k]<n){if ( )&&c[x[k-1]][x[k]==1){/*邻接顶点 x[k]未被访问过*/break;}else{x[k] = x[k] +1}}if(x[k] <n &&( ){ /*找到一条哈密尔顿回路*/for (k=0;k<n;k++){prinf(〝%d--〝,x[k] ; /*输出哈密尔顿回路*/}prinf(〝%d--〝,x[0] ;return;}elseif x[k]<n&&k<n-1){/*设置当前顶点的访问标志,继续下一个顶点*/( );k=k+1;}else{/*没有未被访问过的邻接顶点,回退到上一个顶点*/x[k]=0;visited x[k]=0;( );}}}
【问题1】(10分)
根据题干说明。填充C代码中的空(1)~(5)。
【问题2】(5分)
根据题干说明和C代码,算法采用的设计策略为( ),该方法在遍历图的顶点时,采用的
是( )方法(深度优先或广度优先)。
【问题1】(10分)
1. visited[0] = 1
2. visited[x[k]] == 0
3. k==n-1&&c[x[k]][x[0]==1
4. visited[x[k]] = 1
5. k = k - 1
【问题2】(5分)
回溯法、深度优先。
( )is the process of transforming information so it is unintelligible to anyone but the intended recipient.
As each application module is completed,it undergoes( )to ensure that it operates correctly and reliably.
( )algorithm specifies the way to arrange data in a particular order.
After analyzing the source code,( )generates machine instructions that will carry out the meaning of the program at a later time.
( )can help organizations to better understand the information contained within the data and will also help identify the data that is most important to the business and future business decisions.
浏览器开启无痕浏览模式后,( )依然会被保存下来。
下列协议中,不属于TCP/IP协议簇的是( )。
下列传输介质中,带宽最宽、抗干扰能力最强的是( )。
数控编程常需要用参数来描述需要加工的零件的图形。在平面坐标系内,确定一个点需要2个独立的参数,确定一个正方形需要( )个独立的参数。
某书的页码为1,2,3,...,共用数字900个(一个多位数页码包含多个数字),据此可以推断,该书最大的页码为( )。