设是二阶常系数非齐次线性微分方程
的一个特解,则
设函数f(x)=x+aln(1+x)+bxsinx,g(x)=kx^3,若f(x)与g(x)在x→0是等价无穷小,求a,b,k值.
设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.
已知函数f(x,y)=x+y+xy,曲线C:x^2+y^2+xy=3,求f(x,y)在曲线C上的最大方向导数.
(Ⅰ)设函数u(x),ν(x)可导,利用导数定义证明[u(x)ν(x)]’=u’(x)ν(x)+u(x)ν’(x);
(Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的求导公式.
设随机变量X的概率密度为
对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y为观测次数.
(Ⅰ)求Y的概率分布;
(Ⅱ)求EY.
设总体X的概率密度为
其中θ为未知参数,X1,X2,…,Xn,为来自该总体的简单随机样本.
(Ⅰ)求θ的矩估计量;
(Ⅱ)求θ的最大似然估计量.