1997年,国际象棋大师加里·卡斯帕罗夫败给了电脑“深蓝”;2016年,谷歌人工智能AlphaGo又战胜了韩国棋手李世石。这标志着人工智能终于征服了它在棋类比赛中最后的弱项——围棋,谷歌公司的DeepMind团队比预期提前了整整10年达到了既定目标。
对计算机来说,围棋并不是因为其规则比国际象棋复杂而难以征服——与此完全相反,围棋规则更简单,它其实只有一种棋子,对弈的双方轮流把黑色和白色的棋子放到一个19x19的正方形棋盘中,落下的棋子就不能再移动了,只会在被对方棋子包围时被提走,到了棋局结束时,占据棋盘面积较多的一方为胜者。
围棋的规则如此简单,但对于计算机来说却又异常复杂,原因在于围棋的步数非常多,而且每一步的可能下法也非常多。以国际象棋作对比,国际象棋每一步平均约有35种不同的可能走法,一般情况下,多数棋局会在80步之内结束。围棋棋盘共有361个落子点,双方交替落子,整个棋局的总排列组合数共有约10701种可能性,这远远超过了宇宙中的原子总数——10^{80}!
对于结构简单的棋类游戏,计算机程序开发人员可以使用所谓的“暴力”方法,再辅以一些技巧,来寻找对弈策略,也就是对余下可能出现的所有盘面都进行尝试并给予评价,从而找出最优的走法。这种对整棵博弈树进行穷举搜索的策略对计算能力要求很高,对围棋或者象棋程序来说是非常困难的,尤其是围棋,从技术上来讲目前不可能做到。
“蒙特卡罗树搜索”是一种基于蒙特卡罗算法的启发式搜索策略,能够根据对搜索空间的随机抽样来扩大搜索树,从而分析围棋这类游戏中每一步棋应该怎么走才能够创造最好机会。举例来说,假如筐里有100个苹果,每次闭着眼拿出1个,最终要挑出最大的1个。于是先随机拿1个,再随机拿1个跟它比,留下大的,再随机拿1个……每拿一次,留下的苹果都至少不比上次的小。拿的次数越多,挑出的苹果就越大。但除非拿100次,否则无法肯定挑出了最大的。这个挑苹果的方法,就属于蒙特卡罗算法。虽然“蒙特卡罗树搜索”在此前一些弈棋程序中也有采用,在相对较小的棋盘中也能很好地发挥作用,但在正规的全尺寸棋盘上,这种方法仍然存在相当大的缺陷,因为涉及的搜索树还是太大了。
AlphaGo人工智能程序中最新颖的技术当属它获取知识的方式——深度学习。AlphaGo借助两个深度卷积神经网络(价值网络和策略网络)自主地进行新知识的学习。深度卷积神经网络使用很多层的神经元,将其堆叠在一起,用于生成图片逐渐抽象的、局部的特征。对图像分析得越细,利用的神经网络层就越多。AlphaGo 也采取了类似的架构,将围棋棋盘上的盘面视为19×19的图片输入,然后通过卷积层来表征盘面。这样,两个深度卷积神经网络中的价值网络用于评估盘面,策略网络用于采样动作。
在深度学习的第一阶段——策略网络的有监督学习(即从______I____中学习)阶段,拥有13层神经网络的AlphaGo借助围棋数据库KGS中存储的3000万份对弈棋谱进行初步学习。这3000万份棋谱样本可以用a、b进行统计。a是一个二维棋局,把a输入到一个卷积神经网络进行分类,分类的目标就是落子向量A。通过不断的训练,尽可能让计算机得到的向量A接近人类高手的落子结果b,这样就形成了一个模拟人类下围棋的神经网络,然后得出一个下棋函数F go()。当盘面走到任何一种情形的时候,AlphaGo都可以通过调用函数F go()计算的结果来得到最佳的落子结果b可能的概率分布,并依据这个概率来挑选下一步的动作。在第二阶段——策略网络的强化学习(即从____II______ 中学习)阶段,AlphaGo开始结合蒙特卡罗树搜索,不再机械地调用函数库,而类似于一种人类进化的过程:AlphaGo会和自己的老版本对弈。即,先使用F_go(1)和F_go(1)对弈,得到了一定量的新棋谱,将这些新棋谱加入到训练集当中,训练出新的F_go(2),再使用F_go(2)和F_go(1)对弈,以此类推,这样就可以得到胜率更高的F_go(n)。这样,AlphaGo就可以不断改善它在第一阶段学到的知识。在第三阶段——价值网络的强化学习阶段,AlphaGo可以根据之前获得的学习经验得出估值函数v(s),用于预测策略网络自我对抗时棋盘盘面s的结果。最后,则是将F_go()、v(s)以及蒙特卡罗树搜索三者相互配合,使用F_go()作为初始分开局,每局选择分数最高的方案落子,同时调用v(s)在比赛中做出正确的判断。
这就是AlphaGo给围棋带来的新搜索算法。它创新性地将蒙特卡罗模拟和价值网络、策略网络结合起来训练深度神经网络。这样价值网络和策略网络相当于AlphaGo的两个大脑,策略网络负责在当前局面下判断“最好的”下一步,可以理解为落子选择器;价值网络负责评估整体盘面的优劣,淘汰掉不值得深入计算的走法,协助前者提高运算效率,可以理解为棋局评估器。通过两个“大脑”各自选择的平均值,AlphaGo最终决定怎样落子胜算最大。通过这种搜索算法,AlphaGo和其他围棋程序比赛的胜率达到了99.8%。
AlphaGo的飞快成长是任何一个围棋世界冠军都无法企及的。随着计算机性能的不断增强,遍历蒙特卡罗搜索树将进一步提高命中概率。大量的计算机专家,配合大量的世界围棋高手,在算法上不断革新,再配合不断成长的超级计算能力,不断地从失败走向成功,最终打造出围棋人工智能。在AlphaGo击败李世石后,欧洲围棋冠军樊麾说了这么一句话:“这是一个团队的集体智慧用科技的方式战胜了人类数千年的经验积累。”人和机器其实没有站在对立面上,“是人类战胜了人类”。
根据文章,回答下列问题:
下列关于AlphaGo“两个大脑”的说法正确的是:
A项:锁定第8段中价值网络负责评估整体盘面的优劣,淘汰掉不值得深入计算的走法。与选项A内容一致。
B项:锁定第8段中策略负责在当前局面下判断最好的下一步,可以理解为落子选择器。与B项内容一致。
C项:锁定第8段中价值网络负责评估整体盘面的优劣,淘汰掉不值得深入计算的走法,协助前者提高运算效率,可以理解为棋局评估器。而C选项是,策略网路协助价值网络提升运算效率,与原文刚好相反,因此错误。
D项:锁定第8段最后,通过两个大脑各自选择的平均值,AlphaGo最终决定怎样落子胜算最大。选项D与原文一致,因此正确。
我国民法是调整( )的公民之间,法人之间以及公民和法人之间的财产关系和人身关系的法律规范的总称。
邓小平理论的精髓是( )。
动物园内海洋馆、热带馆、熊猫馆采取分时段展览形式,海洋馆每展览3天闭馆1天,热带馆每展览7天闭馆3天,熊猫馆每展览6天闭馆2天。若三个场馆同时从周一开始进行展览,则三个场馆第一次均闭馆是星期几?()
除藏书外,藏书楼的另一个重要功能,就是作为藏书家及文人学者校勘书籍、读书研究的主要场所,为了使藏书内容准确,没有舛误,他们将多种刊本进行比对,通过勘订,改正原书中的错处,以免________。
填入横线部分最恰当的一项是:
下列名言、诗句和其体现的哲学原理对应一致的是:
俄国十月革命开辟了世界无产阶级社会主义革命的新时代,同时也推动了国内无产阶级革命的发展,这是毛泽东思想形成的:
加快构建以国内大循环为主体、国内国际双循环相互促进的新发展格局,是“十四五”规划《建议》提出的一项关系我国发展全局的重大战略任务。构建新发展格局的关键在于:
所列出的教育情境均有一个或多个问题要你回答。你应根据资料提供的信息进行分析判别、权衡选择最符合题目要求的一种处理方式。
初一新生小周在军训中总是无精打采,很久都没有学会正步走,作为小周的老师,在与学生交流时哪句话不合适?
①所以各种不同的文化、社会制度都是人类为适应各种不同的客观世界和环境所创造的
②有了这样的理论,我们就可以比较广泛地认识备种各样人类社会的不同现象
③既然如此,我们就认为在相同的环境里,人类会有相同或类似的表现
④社会科学有个基本的认识,人类虽然分为各种各样的人群、民族,但人类的本性和对生活的追求是相近的
⑤我们把各种不同环境中人类相应的表现总结出来。就是人类社会普遍性的规律和理论
⑥如婚烟家庭,社会分层等,都是把人在不同场景、地位下的表现做规律性总结,这种总结就是相关问题的理论
将以上6个句子重新排列,语序正确的是: