当前位置:首页 → 学历类 → 成考(专升本) → 高等数学二(专升本)->当x>0时,证明:ex>1+x.
当x>0时,证明:ex>1+x.
证法1:在[0,x]上令F(x)=ex,则使用拉格朗日定理得,F(x)-F(0)=F'(ξ)(x-0),ξ∈(0,x),即ex-1=eξ·x,由于eξ>1.所以ex-1>x,即ex>1+x.证法2:令G(x)=ex-1-x,则G'(x)=ex-1,故在[0,x]内G'(x)>0,所以在[0,x]上G(x)单调递增,由G(0)=0,得x>0时,G(x)>0,即ex-1-x>0,亦即ex>1+x.